Cable structure

Cable structure, Form of long-span structure that is subject to tension and uses suspension cables for support. Highly efficient, cable structures include the suspension bridge, the cable-stayed roof, and the bicycle-wheel roof. The graceful curve of the huge main cables of a suspension bridge is almost a catenary, the shape assumed by any string or cable suspended freely between two points. The cable-stayed roof is supported from above by steel cables radiating downward from masts that rise above roof level. The bicycle-wheel roof involves two layers of tension cables radiating from an inner tension ring and an outer compression ring, which in turn is supported by columns.

Suspension bridge

Suspension bridge, bridge with overhead cables supporting its roadway. One of the oldest of engineering forms, suspension bridges were constructed by primitive peoples using vines for cables and mounting the roadway directly on the cables. A much stronger type was introduced in India about the 4th century AD that used cables of plaited bamboo and later of iron chain, with the roadway suspended.

In modern times, the suspension bridge provided an economical solution to the problem of long spans over navigable streams or at other sites where it is difficult to found piers in the stream. British, French, American, and other engineers of the late 18th and early 19th centuries encountered serious problems of stability and strength against wind forces and heavy loads; failures resulted from storms, heavy snows, and droves of cattle. Credit for solving the problem belongs principally to John Augustus Roebling, a German-born American engineer who added a web truss to either side of his roadways and produced a structure so rigid that he successfully bridged the Niagara Gorge at Niagara Falls, New York, the Ohio River at Cincinnati, and, finally, in his masterpiece, the East River between Brooklyn and Manhattan at New York City.

The technique of cable spinning for suspension bridges was invented by the French engineer Louis Vicat, a contemporary of Roebling. Vicat’s method employed a traveling wheel to carry the continuous cable strand from the anchorage on one side up over the tower, down on a predetermined sag (catenary) to the midpoint of the bridge, up and over the tower on the farther side to the farther anchorage, where a crew received the wheel, anchored the strand, and returned the wheel, laying a fresh strand. From these successive parallel strands a cable was built up .

Another major development in the modern suspension bridge was the pneumatic caisson, which permitted pier foundation at great depths. It was used initially by French, British, and American engineers, including Washington Roebling, who completed his father’s Brooklyn Bridge.

For a time in the 1930s, American engineers experimented with a narrow solid girder in place of the web truss to stiffen the roadway, but the failure of the Tacoma Narrows Bridge in 1940 under aerodynamic forces instigated a return to the web truss. Later, aerodynamically stable box girders replaced the web truss.

By the late 1980s, three suspension bridges (the Golden Gate, in San Francisco, the Verrazano-Narrows, in New York City, and the Humber Bridge, near Hull, England) had main-span lengths of more than 4,000 feet (1,200 metres). Modern steel alloys are considered capable of much greater spans. Though suspension bridges can be made strong enough to support freight trains, they have nearly all been designed for automobile traffic.

A cable-braced bridge was developed by German engineers at Cologne, Düsseldorf, and elsewhere in the 1950s and ’60s; in this form a single tower at the midpoint supports the roadway by means of a number of cables. Another development of the 1960s, aimed at reducing time of construction, was cable fabricated in the shop.

Related Posts

Comments are closed.

© 2025 Civil Engineering - Theme by WPEnjoy · Powered by WordPress